top of page
  • Whatsapp
  • Instagram
  • Facebook
  • Linkedin

Data Science and Big data analytics 

Core Subjects

  1. Mathematics for Data Science (Linear Algebra, Probability, Statistics)

  2. Data Structures & Algorithms

  3. Programming for Data Science (Python, R, SQL, Scala)

  4. Big Data Technologies (Hadoop, Spark, Kafka)

  5. Machine Learning & Predictive Analytics

  6. Deep Learning & Neural Networks

  7. Natural Language Processing (NLP)

  8. Data Engineering & Data Pipelines

  9. Cloud Computing for Data Science (AWS, GCP, Azure)

  10. Database Systems (SQL, NoSQL, MongoDB)

  11. Data Mining & Pattern Recognition

  12. Time Series Analysis & Forecasting

 

Advanced & Elective Subjects

  1. Large-Scale Data Processing (MapReduce, Apache Flink)

  2. Reinforcement Learning

  3. Graph Analytics & Network Science

  4. Explainable AI & Responsible AI

  5. Data Ethics & Privacy (GDPR, HIPAA)

  6. Blockchain & Data Security

  7. AI for Business Intelligence & Decision Making

  8. Recommender Systems

  9. Streaming Analytics & Real-Time Data Processing

  10. Bayesian Inference & Probabilistic Models

  11. Computer Vision in Data Science

  12. Geospatial & Location-Based Data Analytics

  13. Data Science in Healthcare & Bioinformatics

 

Practical & Research-Based Courses

  1. Capstone Project / Research Thesis

  2. Big Data Visualization & Dashboards (Tableau, Power BI)

  3. A/B Testing & Causal Inference

  4. Data Science for Finance & FinTech

  5. Entrepreneurship in Data Science & AI Startups

bottom of page